Extended Discrete Choice Models: Integrated Framework, Flexible Error Structures, and Latent Variables
نویسندگان
چکیده
Discrete choice methods model a decision-maker's choice among a set of mutually exclusive and collectively exhaustive alternatives. They are used in a variety of disciplines (transportation, economics, psychology, public policy, etc.) in order to inform policy and marketing decisions and to better understand and test hypotheses of behavior. This dissertation is concerned with the enhancement of discrete choice methods. The workhorses of discrete choice are the multinomial and nested logit models. These models rely on simplistic assumptions, and there has been much debate regarding their validity. Behavioral researchers have emphasized the importance of amorphous influences on behavior such as context, knowledge, and attitudes. Cognitive scientists have uncovered anomalies that appear to violate the microeconomic underpinnings that are the basis of discrete choice analysis. To address these criticisms, researchers have for some time been working on enhancing discrete choice models. While there have been numerous advances, typically these extensions are examined and applied in isolation. In this dissertation, we present, empirically demonstrate, and test a generalized methodological framework that integrates the extensions of discrete choice. The basic technique for integrating the methods is to start with the multinomial logit formulation, and then add extensions that relax simplifying assumptions and enrich the capabilities of the basic model. The extensions include: SpeciJyingfactor analytic (probit-like) disturbances i order to provide a flexible covariance structure, thereby relaxing the IIA condition and enabling estimation of unobserved heterogeneity through techniques such as random parameters. Combining revealed and stated preferences in order to draw on the advantages of both types of data, thereby reducing bias and improving efficiency of the parameter estimates. Incorporating latent variables in order to provide a richer explanation of behavior by explicitly representing the formation and effects of latent constructs such as attitudes and perceptions. Stipulating latent classes in order to capture latent segmentation, for example. in terms of taste parameters, choice sets, and decision protocols.
منابع مشابه
Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملHybrid Choice Models: Progress and Challenges
We discuss the development of predictive choice models that go beyond the random utility model in its narrowest formulation. Such approaches incorporate several elements of cognitive process that have been identified as important to the choice process, including strong dependence on history and context, perception formation, and latent constraints. A flexible and practical hybrid choice model i...
متن کاملFixed and Random Effects in Nonlinear Models
This paper surveys recently developed approaches to analyzing panel data with nonlinear models. We summarize a number of results on estimation of fixed and random effects models in nonlinear modeling frameworks such as discrete choice, count data, duration, censored data, sample selection, stochastic frontier and, generally, models that are nonlinear both in parameters and variables. We show th...
متن کاملPreliminary. Comments invited Fixed and Random Effects in Nonlinear Models
This paper surveys recently developed approaches to analyzing panel data with nonlinear models. We summarize a number of results on estimation of fixed and random effects models in nonlinear modeling frameworks such as discrete choice, count data, duration, censored data, sample selection, stochastic frontier and, generally, models that are nonlinear both in parameters and variables. We show th...
متن کاملSemiparametric Qualitative Response Model Estimation with Unknown Heteroscedasticity or Instrumental Variables
This paper provides estimators of discrete choice models, including binary, ordered, and multinomial response (choice) models. The estimators closely resemble ordinary and two stage least squares. The distribution of the models latent variable error is unknown and may be related to the regressors, e.g., the model could have errors that are heteroscedastic or correlated with regressors. The est...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001